[ 2018 Multi-University Training Contest 1 ] [ HDU6304 ] G Chiaki Sequence Revisited
题意:有一个数列定义如下:\(a_1 = a_2 = 1, a_n = a_{n-a_{n-1}} + a_{n-1-a_{n-2}} (n \geq 3) \),求\(\sum_{i=1}^n{a_i}\)。(\( 1 \leq n \leq 10^{18}\),多组数据,\(T \leq 10^5\))
题解:先打个表观察一下。数列从1开始如下:1 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11 12 12 12 13 14 14 15 16 16 16 16 16 ...
可以发现这么一件事情:除了1以外,每个数的出现次数等于它二进制下从低位向高位数,第一个1的位置。由此我们可以得到出现次数相等的数字排列起来是一个等差数列(考虑lowbit相等的数,相邻间隔为其lowbit乘2),二分出\(a_n\)是多少,然后计算即可,时间复杂度是\(O(\log^2{n})\)的。
有\(O(\log{n})\)的解法,依然不考虑\(a_1\)(因为\(a_1\)不满足这个性质),利用每个数出现的次数所组成的序列来看:\[1\ 2\ 1\ 3\ 1\ 2\ 1\ 4\ 1\ 2\ 1\ 3\ 1\ 2\ 1\ 5\ 1\ 2\ 1\ 3\ 1\ 2\ 1\ 4\ 1\ 2\ 1\ 3\ 1\ 2\ 1\ 6\]
仔细观察会发现这是个分形(也许),刚开始序列中只有一个数为1,之后我每次将该序列赋值一遍,然后把最后一个数加1。
第一次:\(1\ 2\)
第二次:\(1\ 2\ 1\ 3\)
第三次:\(1\ 2\ 1\ 3\ 1\ 2\ 1\ 4\)
第四次:\(1\ 2\ 1\ 3\ 1\ 2\ 1\ 4\ 1\ 2\ 1\ 3\ 1\ 2\ 1\ 5\)
利用该性质,可以通过预处理出数字为\(1..2^n\)时所有数出现次数的总数以及和。由于将任意一个该序列分为两半,前后两半只有最后一位是不一样的,所以可以通过类似快速幂的方法求出答案,处理到最后多出的数字一定是相等的(具体看代码)。
#include <bits/stdc++.h> using namespace std; const int mo=1e9+7; long long Pow(long long x,int p) { long long res=1; while (p) { if (p&1) (res*=x)%=mo; (x*=x)%=mo; p>>=1; } return res; } long long Mul(long long a,long long b) { return (a%mo)*(b%mo)%mo; } long long c[64]; long long sum[64]; long long n; long long Solve(long long x) { long long ans=1,num=0; x--; for (int i=62;i>=0;i--) if (x>=c[i]) { x-=c[i]; ans=(ans+sum[i]+Mul(c[i],num))%mo; num+=(1ll<<i); } (ans+=Mul(x,num+1))%=mo; return ans; } int main() { c[0]=1;c[1]=3; sum[0]=1;sum[1]=5; for (int i=2;i<63;i++) c[i]=c[i-1]*2+1,sum[i]=(2*sum[i-1]+Pow(2,i)+Pow(2,i-1)*(Pow(2,i)-1))%mo; int T; scanf("%d",&T); while (T--) { scanf("%lld",&n); printf("%lld\n",Solve(n)); } return 0; }
2024年1月19日 11:50
Pavzi.com provides all the news about Gadgets, the Economy, Technology, Business, Finance and many more. The main concept or our aim behind this website has been the will to provide resources with full information on each topic which can be accessed through the Internet. To ensure that every reader gets what is important and worthy about the topic they search and link to hear from us.pavzi.com Our site is a multiple Niche or category website which will ensure to provide information and resources on each and every topic. Some of the evergreen topics you will see on our website are Career, Job Recruitment, Educational, Technology, Reviews and others. We are targeting mostly so it is true that Tech, Finance, and Product Reviews.